Variable Clustering in High-Dimensional Linear Regression: The R Package clere

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Clustering in High-Dimensional Linear Regression: The R Package clere

Dimension reduction is one of the biggest challenges in high-dimensional regression models. We recently introduced a new methodology based on variable clustering as a means to reduce dimensionality. We present here the R package clere that implements some refinements of this methodology. An overview of the package functionalities as well as examples to run an analysis are described. Numerical e...

متن کامل

The flare package for high dimensional linear regression and precision matrix estimation in R

This paper describes an R package named flare, which implements a family of new high dimensional regression methods (LAD Lasso, SQRT Lasso, ℓ q Lasso, and Dantzig selector) and their extensions to sparse precision matrix estimation (TIGER and CLIME). These methods exploit different nonsmooth loss functions to gain modeling exibility, estimation robustness, and tuning insensitiveness. The develo...

متن کامل

High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust

The R package bclust is useful for clustering high-dimensional continuous data. The package uses a parametric spike-and-slab Bayesian model to downweight the effect of noise variables and to quantify the importance of each variable in agglomerative clustering. We take advantage of the existence of closed-form marginal distributions to estimate the model hyper-parameters using empirical Bayes, t...

متن کامل

An R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation

This paper describes an R package named flare, which implements a family of new high dimensional regression methods (LAD Lasso, SQRT Lasso, `q Lasso, and Dantzig selector) and their extensions to sparse precision matrix estimation (TIGER and CLIME). These methods exploit different nonsmooth loss functions to gain modeling flexibility, estimation robustness, and tuning insensitiveness. The devel...

متن کامل

Package hdlm: Regression Tables for High Dimensional Linear Model Estimation

We present the R package hdlm, created to facilitate the study of high dimensional datasets. Our emphasis is on the production of regression tables and a class ‘hdlm’ for which new extensions can be easily written. We model our work on the functionality given for linear and generalized linear models from the functions lm and glm in the recommended package stats. Reasonable default options have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The R Journal

سال: 2016

ISSN: 2073-4859

DOI: 10.32614/rj-2016-006